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Abstract

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to
control the rigid and flexible motions of a single-link robotic manipulator. The controllers and the observer
have been designed based on a simplified model of the arm, which only accounts for the first elastic mode of
the beam. The controllers consist of a conventional sliding mode controller (CSMC) and a fuzzy-sliding
mode controller (FSMC). Moreover, the robust nonlinear observer has been designed based on the sliding
mode methodology.

The dynamic model, used in assessing the performances of the controllers and the observer, considers the
first two elastic modes of the beam. The inclusion of the second elastic mode has been done to investigate
the effects of unstructured uncertainties on the overall performance of the closed-loop system. The digital
simulations have demonstrated the capability of the observer in yielding accurate estimates of the state
variables in the presence of modeling uncertainties. Moreover, they served to prove the viability of using the
observer to provide on-line estimates of the state variables for the computation of the control signals. The
results have illustrated robust performances of the controllers and the observer in controlling the rigid and
flexible motions of the manipulator in the presence of both structured and unstructured uncertainties. This
was achieved irrespective of the differences in the initial conditions between the plant and the observer.

Furthermore, the structural deformations, incurred by the beam at the onset of its movement, have been
shown to be significantly reduced by fuzzy-tuning the Z-control parameter. The results have demonstrated
the superiority of the FSMC over the CSMC in producing less oscillatory and more accurate response of
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross sectional area of the beam
E Young’s modulus of elasticity
ḡ
�3�1

ðq
�

ðtÞ; _q
�

ðtÞÞ vector representing the right-
hand side of the equations of motion
excluding the control terms

I moment of inertia of the cross sectional
area of the beam

ðI
�
; J
�
;K
�
Þ inertial reference frame fixed at point O

ð i
�
; j
�

; k
�
Þ non-inertial, body fixed, rotating refer-
ence frame

L length of the compliant beam
Mðx
�
Þ inertia matrix

MB mass of the beam
mP mass of the payload
q2iðtÞ generalized coordinate for the ith elastic

mode of the beam in the horizontal
transverse direction

so sliding surface evaluated at t ¼ 0,
sðe
�
ðt ¼ 0Þ; t ¼ 0Þ

sob sliding surface used in the observer
design

treach time at which the system trajectory
reaches the sliding surface

w weighing factor dependent on the fuzzy
term a

r density of aluminum
y angular displacement at the base joint

of the beam
yd desired angular displacement at the

base joint of the beam
( )e ‘‘e’’ subscript denotes an estimated

value of the state variable
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the angular displacement at the base joint, in damping out the unwanted vibrations of the beam, and in
requiring significantly smaller control torques.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The poor end effector positional accuracy of flexible robotic manipulators has limited
their applications to tasks that are error tolerant. The positional inaccuracies stem from both
tracking errors and structural deflections of the robot. Therefore, the controller objective is to
yield good tracking characteristic of the robot while actively damping out the unwanted
vibrations of the links. To achieve this goal, many researchers have developed control schemes
that have led to a significant reduction in the vibrations of the arm by finding a compromise
between the positional accuracy of the end effector and the high-speed operation of the robot
[1–5]. However, most of these controllers are not robust to external disturbances and modeling
uncertainties.
The current study focuses on the sliding mode methodology [6–8] for the development of robust

controllers and an observer to control a single-link flexible robotic manipulator. Numerous sliding
mode controllers (SMC) have been proposed in the literature to address the tracking problem for
multi-link rigid robotic manipulators [9–12] and single-link flexible robot arms [13–15]. The
different versions were introduced to address the shortcomings of the SMC. For instance, if the
starting point of the system trajectory is located off the sliding surface then there will be a reaching
period during which the system is vulnerable to parameter variations and external disturbances.
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Choi et al. [16] proposed an SMC with a stepwise moving sliding surface (MSS) for a class of
second-order uncertain systems. Choi and Park [11] implemented this technique on a two-degree-
of-freedom rigid robotic manipulator. Ha et al. [12] modified the approach of Choi et al. [16] by
using continuous functions for the coefficients of the MSS. Bartoszewicz [17] addressed the
shortcomings of these controllers [12,16] by suggesting a control algorithm that prevents the
system’s representative point from leaving the MSS; thus, ensuring the robustness of the
controlled system during the reaching phase.
Kim and Inman [18] used a CSMC to damp out the vibrations of a flexible cantilevered beam

with piezoelectric actuators/sensors. No rigid-body motion is considered in this study. The CSMC
is coupled in this study with a nonlinear sliding mode observer to eliminate the effects of
observation spillover in the control of flexible structures.
Other studies attempted to combine the salient features of fuzzy logic and sliding mode control

theory by fuzzy-tuning the parameters of the SMC [8,10,12]. Choi and Kim [10] designed a fuzzy-
sliding mode controller (FSMC) for a two-link rigid robotic manipulator by replacing the
feedback gains and their corresponding signum functions in the CSMC control law by time-
varying terms that were determined by a fuzzy logic inference system. Their results demonstrated
the superiority of FSMC over CSMC in improving the tracking accuracy and in attenuating the
chattering in the control signals.
Similarly, Choi et al. [13] used a sliding mode controller with anMSS to regulate the tip position of a

single-link flexible manipulator. Linear time-invariant equations of motion are used to describe the
rigid and flexible motions of the flexible link. Their results demonstrate that the sliding mode controller
with MSS can yield a better performance than the CSMC in regulating the vibrations of the beam.
It should be pointed out that SMC rely on the availability of the state variables of the system

for the computation of their control actions. Therefore, a robust observer is needed to yield
accurate estimates of the state variables in the presence of both parametric uncertainties and
external disturbances.
The variable structure systems (VSS) theory has been successfully used in the development of robust

observers for dynamical systems with bounded nonlinearities and/or uncertainties [19–21]. These
observers do not require exact knowledge of the plant parameters and/or nonlinearities. Their design
is solely based on knowing the upper bounds of the system uncertainties and/or nonlinearities.
Walcott and Zak [19] developed a variable structure observer for systems with observable linear

parts and bounded nonlinearities and/or uncertainties. Wagner and Shoureshi [22] demonstrated
that Walcott and Zak’s observer [19] yields estimates of the state variables that have faster
convergence rates and smaller steady-state errors than those generated by Baumann and Rugh’s
[23], and Thau’s [24] nonlinear observers.
Slotine et al. [20] discussed in detail the design procedure of VSS observers for nonlinear systems

expressed in the companion form. Furthermore, they provided a general guidance on how to
determine the gains of sliding mode observers for nonlinear systems expressed in the general form.
This methodology has been used by Canudas De wit and Slotine [25] in designing a nonlinear sliding
mode observer to estimate the angular velocity at the joints for a rigid robotic manipulator.
In this study, two robust nonlinear controllers along with a nonlinear observer have been

developed to control the rigid and flexible motions of a single-link robotic manipulator. The
controllers consist of a conventional sliding mode controller (CSMC) and an FSMC. The FSMC
has been proposed herein to enhance the tracking characteristic and vibration suppression



ARTICLE IN PRESS

N.G. Chalhoub et al. / Journal of Sound and Vibration 291 (2006) 437–461440
capability of the CSMC. In the proposed FSMC, the Z control parameter has been fuzzy-tuned in
order to reduce the structural deformations that are attributed to the whiplash effect.
Furthermore, the new FSMC design entails the use of two Lyapunov functions that enables
the sliding mode controller to exert a negative control torque during the period when the system is
approaching the boundary layer neighboring the sliding surface. This will significantly reduce the
momentum with which the system approaches the boundary layer; thus, resulting in considerably
smaller structural deformations of the system. In addition, a robust nonlinear observer, based on
the sliding mode methodology [20], has been designed to yield accurate estimates of the state
variables in the presence of model uncertainties and difference in the initial conditions between the
estimator and the plant.
The dynamic model, capturing the rigid and flexible motions of a single-link robotic

manipulator, is derived in Section 2. Subsequently, both the CSMC and the FSMC are designed
in Section 3. Moreover, the design of the nonlinear observer is included in Section 4. The
combined performances of the controllers and the observer are assessed in Section 5. Finally, the
work is summarized and its main contributions are highlighted.
2. Dynamic model

The physical system consists of a flexible link connected to a revolute joint (see Fig. 1). The
beam is made of aluminum and has an annular cross section. It is restricted in its motion to the
horizontal plane. The stiffness of the beam in the longitudinal direction is much higher than in
flexure. Therefore, only the in-plane transverse deflection of the beam, W ðx; tÞ, is considered in
addition to its rigid-body motion. The payload consists of a lumped mass mounted at the free-end
of the beam.
The dynamic model retains all the coupling terms between the rigid and flexible motions of the

beam. The position vector of an arbitrary point on the flexible link is given by

r
�

B ¼ x i
�
þW ðx; tÞ j

�

, (1)

where x is the time invariant since the longitudinal vibration is neglected (see Fig. 1). The assumed
modes method is implemented to approximate W ðx; tÞ, which is considered here to be dominated
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Fig. 1. Flexible link geometry and coordinates.
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by the first two elastic modes [26]. It is written as a linear combination of admissible functions,
FiðxÞ, of spatial coordinate, and time-dependent generalized coordinates, q2iðtÞ. The admissible
functions are chosen to be the first two eigenfunctions of a clamped-free beam derived based on
the Euler–Bernoulli beam assumption [27]. Similarly, the position vector of the payload is
determined by substituting x by L in Eq. (1). The velocity vector of an arbitrary point of the beam
is given by

_r
�

B ¼ _r
�

Bjð i
�
; j
�

;k
�
Þ þ o

�
�r
�

B, (2)

where o
�
is equal to _y k

�
. The total kinetic energy of the system is written as

Tt ¼
1

2

Z
MB

ð _r
�

B � _r
�

BÞdmþ
1

2
mpð _r
�

p � _r
�

pÞ. (3)

The strain energy stored in the system is expressed as

Et ¼
1

2

Z L

0

EI
q2W ðx; tÞ

qx2

� �2

dx. (4)

The total virtual work, done on the system, is determined as follows:

dW t ¼ t1dyþ
1

2

Z L

0

Pð_y; xÞ
qW ðx; tÞ

qx

� �2

dx, (5)

where t1 is the non-conservative generalized control torque applied at the base joint. The second
term reflects the stiffening effect of the beam induced by the centrifugal force Pð_y; xÞ [3,26,28],
which can be expressed as

Pð_y;xÞ ¼
1

2
rA_y

2
L2 1�

x2

L2

� �
þmPL_y

2
. (6)

Note that the variation of the inertial axial force, Pð_y; xÞ, due to the flexible motion is neglected in
this formulation.
The equations governing the rigid and flexible motions of the beam are obtained by

implementing the Lagrange principle. The resulting equations of motion are three highly
nonlinear, coupled, stiff, second-order ordinary differential equations. These equations are then
converted to a set of six first order ordinary differential equations that can be written as

_x1ðtÞ

_x2ðtÞ

_x3ðtÞ

_x4ðtÞ

_x5ðtÞ

_x6ðtÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

f 1 ðx
�
ðtÞ; t1Þ

f 2 ðx
�
ðtÞ; t1Þ

f 3 ðx
�
ðtÞ; t1Þ

f 4 ðx
�
ðtÞ; t1Þ

f 5 ðx
�
ðtÞ; t1Þ

f 6 ðx
�
ðtÞ; t1Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

x4ðtÞ

x5ðtÞ

x6ðtÞ

�M�1ðx
�
ðtÞÞ

ḡ1ðx
�
ðtÞÞ þ t1

ḡ2ðx
�
ðtÞÞ

ḡ3ðx
�
ðtÞÞ

2
6664

3
7775

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, (7)
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where the state vector is defined to be x
�
ðtÞ ¼ ½ y q21 q22

_y _q21 _q22 �
T. The state equations

are solved numerically by using the Gear’s method [29], which is well suited for solving stiff
systems. This model is used, in this study, as a test bed for assessing the combined performances of
the controllers and the observer in the presence of both structured and unstructured uncertainties
of the plant.
However, it should be emphasized that a simplified version of the model, obtained by ignoring

the second elastic mode of the beam, has been used herein in the design of the controllers and the
observer. Its equations can be expressed as

_x
�r
¼

f r1ðx
�

r; t1Þ

f r2ðx
�

r; t1Þ

f r3ðx
�

r; t1Þ

f r4ðx
�

r; t1Þ

0
BBBBBB@

1
CCCCCCA
¼

xr3

xr4

�M�1
r ðx
�

rÞ

ḡr1ðx
�

rÞ þ t1

ḡr2ðx
�

rÞ

2
4

3
5

0
BBBBBBBB@

1
CCCCCCCCA
¼

xr3

xr4

gr1ðx
�

rÞ þ b1ðx
�

rÞt1

gr2ðx
�

rÞ þ b2ðx
�

rÞt1

0
BBBBB@

1
CCCCCA, (8)

where x
�

r ¼ ½ y q21
_y _q21 �

T. Note that Mrðx
�

rÞ, ḡr1ðx
�

rÞ and ḡr2ðx
�

rÞ are obtained from Mðx
�
Þ,

ḡ1ðx
�
Þ and ḡ2ðx

�
Þ in Eq. (7) by deleting the entries and terms associated with q22ðtÞ and its time

derivative. The detailed expressions for f r3 and f r4 are listed in Appendix A.
3. Design of the robust nonlinear controllers

Two robust controllers, consisting of a CSMC and an FSMC, have been designed in this study
to control the rigid and flexible motions of the single-link robotic manipulator. Their objective is
to provide a robust set-point tracking characteristic of the flexible manipulator while actively
damping out the unwanted vibrations.
Both controllers are designed based on the following y equation:

€y ¼ _xr3 ¼ gr1ðx
�

rÞ þ b1ðx
�

rÞt1. (9)

The term b1ðx
�

rÞ is considered to be fully known. However, gr1ðx
�

rÞ is treated as an unknown term.

It has been approximated by the following nominal function ĝr1:

ĝr1ðx̂
�

rÞ ¼
�x̂r2ð700x̂r3x̂r4 � 70x̂r3 � 770; 000Þ

300x̂2
r2 þ 6

. (10)

Note that the nominal functions, used in this study, are generated by randomly changing the
numerical values of all the coefficients as well as the exponents of some of the terms in their
respective exact functions. The rationale is to introduce structured uncertainties in the closed-loop
system.
Only the upper bound of the model imprecision is assumed to be known. It is defined as

jDf r3j ¼ jf r3 � f̂ r3j ¼ jgr1 � ĝr1jpF3. (11)
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Since the task of the controller is to force y to track the desired angular displacement, yd , then the
tracking error is defined to be

e1 ¼ xr1 � xr1d ¼ y� yd . (12)

Accordingly, the sliding surface is expressed as

sðe
�
; tÞ ¼ _e1 þ le1. (13)

Based on the nominal function ĝr1 of the system, the continuous control law t1eq, satisfying
_sðe
�
; tÞ ¼ 0, is expressed as

t1eq ¼ b�11 f�ĝr1 þ €x1d � l_e1g. (14)

Once on the surface, the dynamic response of the system is governed by

d

dt
þ l

� �
e1 ¼ 0. (15)

The tracking error will be driven to zero by selecting l to be a strictly positive constant. To force
the system trajectory to converge to the sliding surface in the presence of both model uncertainties
and disturbances, the feedback control torque t1 is defined as

t1 ¼ t1eq � b�11 k sgnðsÞ, (16)

where k is determined by satisfying the following sliding condition:

d

dt
V1 ¼

1

2

d

dt
s2ðe
�
; tÞp� Zjsj. (17)

Note that V1 ¼
1
2
s2 is a positive definite function. It represents the squared distance between the

sliding surface and any representative point of the system. The selection of Z to be strictly positive
will ensure that _V1 is negative definite. Therefore, V1 becomes a Lyapunov function that
decreases along all trajectories of the system; thus, causing the sliding surface to become an
invariant set. It can be easily proven that the above inequality is satisfied by selecting k to be

kXZþ F3. (18)

To alleviate the chattering problem induced by the switching term in the control signal, the sgnðsÞ
term in Eq. (16) is often replaced by a saturation function as follows:

t1 ¼ t1eq � b�11 k sat
s

F

� �
, (19)

where F is the thickness of the boundary layer. It is considered herein to be time-variant.
Therefore, to ensure convergence of the system trajectory to the boundary layer, the sliding
condition in Eq. (17) had to be modified to the following form:

1

2

d

dt
s2ðe
�
; tÞpð _F� ZÞjsj. (20)

The above condition can be satisfied by changing the expression of t1 as follows:

t1 ¼ t1eq � b�11 k̄ sat
s

F

� �
, (21)
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where k̄ ¼ k � _F. The differential equation governing the behavior of _F is derived in detail in the
literature [6,7]. It is given by

_Fþ lF ¼ kðyd Þ, (22)

where kðyd Þ is defined in Eq. (18).
Up to this stage, the formulation has only dealt with the design of the CSMC. To enhance the

performance of this controller, its parameter Z is now fuzzy-tuned. The rationale is to reduce both
the rise time and the oscillations of y, to attenuate the deformations at the onset of the beam
movement, and to require a relatively smaller control torque. This is done by designing the Z-fuzzy
inference system (FIS) to assign small numerical values to Z at the beginning of the beam
movement. The rationale is to gradually build up the momentum of the beam in order to reduce
the ‘‘whiplash’’ effect; thus, reducing the deformations at the onset of the beam movement. Once
the beam is set in motion, Z is increased considerably in order to shorten the reaching time to the
sliding patch. In the vicinity of the sliding surface, Z is once again reduced significantly in order to
decrease the thickness of the boundary layer F, whose steady-state value is directly proportional
to Z. It should be pointed out that small values of F are desired when the system is nearing the
sliding surface in order to improve its tracking accuracy.
The input to the Z-FIS is selected to be the normalized error in the base joint angular

displacement, en ¼ ðyd � yÞ=yd . Note that the normalized value is used to adapt the FIS to any
range of the error input. The membership functions for the input and output variables of the Z-
FIS are shown in Fig. 2. Furthermore, the fuzzy rule base consists of five linguistic ‘‘if-then’’ rules
that are summarized in Table 1. The Mamdani-type FIS is used herein to compute the centroid of
the resulting fuzzy set in order to defuzzify the output into a crisp value for Z.
Furthermore, it should be stressed that the CSMC is unable to exert a negative control torque

during the reaching phase. As a consequence, the system reaches the sliding surface with a large
momentum and a sharp angle of approach causing its response to be highly oscillatory inside the
boundary layer. The first few peaks will be truncated due to the robustness characteristic of the
controller that prevents the system from exiting the boundary layer. However, the high control
activity within the boundary layer results in a violently switching control torque that has a
tendency to excite the elastic modes of the flexible structure. Thus, the structure of the CSMC had
to be modified in this study to provide the controller with the capability of slowing down the
system response prior to reaching the sliding patch. This is done by implementing the following
positive definite function:

V2 ¼
1
2
½sð1þ we21Þ�

2. (23)

It should be mentioned that the control signal, based on V2, is only activated when the
percentage ðso � sÞ=so � 100 is between 33% and 2%. Otherwise, the control scheme, based on V1

in Eq. (21), is used. The sliding condition corresponding to V2 can be written as

d

dt
V2 ¼

1

2

d

dt
½sð1þ we21Þ�

2p½ _F� Z�ð1þ we21Þ
2
jsj, (24)

where Z40 and k̄ associated with the above condition is determined to be

k̄XZ� _Fþ F þ jsj
d½lnð1þ we21Þ�

dt
. (25)
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Table 1

Summary of the rules used in the Z-FIS

Theta error normalized Z

NLarge Small

NSmall Large

Zero Small

PSmall Large

PLarge Small

Fig. 2. Membership functions used in the Z-FIS: (a) NLarge (- - - -), NSmall ( ), Zero (– – – –), PSmall ( ),

PLarge (——), (b) small (- - - -), large (——).
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One approach to assign a negative control torque, during the reaching phase, is to force k̄ to take
on negative values. This is done herein as follows:

aXk̄XZ� _Fþ F þ jsj
½ _we21 þ 2e1 _e1w�

ð1þ we21Þ
, (26)
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where ap0. Its value is assigned by an a-FIS, whose rules have been constructed to yield an
appropriate negative control torque in the region nearing the sliding patch. The rationale is to
dissipate most of the momentum of the system before it reaches the sliding surface. The input to
the a-FIS is selected to be the normalized s, sn ¼ ðso � sÞ=so, where so is equal to s when it is
evaluated at t ¼ 0. Note that sn is used to adapt the FIS to arbitrary initial conditions of so. The
membership functions for the input and output variables of the a-FIS are shown in Fig. 3.
Furthermore, the fuzzy rule base consists of five linguistic ‘‘if-then’’ rules that are summarized in
Table 2. The Mamdani-type FIS is used herein to compute the centroid of the resulting fuzzy set
in order to defuzzify the output into a crisp value for a.
Next, both w and _w of Eq. (26) have to be selected based on the assigned value of a while

ensuring that the sliding condition of Eq. (24) is satisfied. This results in _V2 being negative semi-
definite. Thus, to achieve this goal, Eq. (26) is rearranged to yield

_wp
1

jsje21
ða� Zþ _F� F Þð1þ we21Þ �

2_e1w

e1
. (27)

The above equation along with the result of its numerical integration yields the numerical values
for both w and _w that are needed for the computation of k̄ in Eq. (25).
Fig. 3. Membership functions used in the a-FIS: (a) NLarge (- - - -), NSmall ( ), Zero (– – – –), PSmall ( ),

PLarge (——), (b) zero (- - - -), large (——).
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Table 2

Summary of the rules used in the a-FLC

Normalized ‘‘s’’ a

NLarge Zero

NSmall Large

Zero Zero

PSmall Large

PLarge Zero

N.G. Chalhoub et al. / Journal of Sound and Vibration 291 (2006) 437–461 447
4. Design of the nonlinear robust observer

The objective of the observer is to accurately estimate y; q21; _y and _q21 in the presence
of disturbances and model uncertainties. It is designed based on the simplified version of
the model, which is defined in Eq. (8). The estimation error vector ~x

�
r is determined from

x̂
�

r � x
�

r ¼ ½ ye � y q21e � q21
_ye �

_y _q21e � _q21 �
T. Both b1 and b2 are assumed to be fully

known in the design of the observer. However, gr1 and gr2 are approximated by ĝr1 and ĝr2,
respectively. Note that ĝr1 has already been defined in Eq. (10). However, ĝr2 is expressed as
follows:

ĝr2ðx̂
�

rÞ ¼
�x̂r2ð650000x̂2

r2 þ 60x̂r2x̂
2
r3 � 780x̂r4 þ 80x̂r3 þ 930000Þ

300x̂2
r2 þ 6

. (28)

Moreover, since only yðtÞ is considered to be known from measurements in the design of the
observer then the sliding surface is selected to be

sob9 ~xr1 ¼ x̂r1 � xr1. (29)

The state equations of the estimator are written as [20]:

_̂xr1 ¼ x̂r3 � k̄1 ~xr1 � k1 sgnð ~xr1Þ, (30a)

_̂xr2 ¼ x̂r4 � k̄2 ~xr1 � k2 sgnð ~xr1Þ, (30b)

_̂xr3 ¼ f̂ r3 � k̄3 ~xr1 � k3 sgnð ~xr1Þ, (30c)

_̂xr4 ¼ f̂ r4 � k̄4 ~xr1 � k4 sgnð ~xr1Þ. (30d)

Consequently, the estimation error vector equation is given by

_~x
�

r ¼ Df
�

r � k̄ ~xr1 � k sgnð ~xr1Þ, (31)

where Df
�

r ¼ ½ ~xr3 ~xr4 Df r3 Df r4 �
T. Note that the modeling uncertainties Df r3 and Df r4 are

determined from ðf̂ r3 � f r3Þ and ðf̂ r4 � f r4Þ, respectively. The gain k1 is selected to satisfy the
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following sliding condition:

1

2

d

dt
s2obð ~x
�
; tÞp� Zobjsobj ) k1XZob � k̄1j ~xr1j þ ~xr3 sgnð ~xr1Þ. (32)

In addition, k1 must be positive so that the switching term, �k1 sgnð ~xr1Þ, can force the system to
remain on the sliding surface in the presence of both model imprecision and disturbances.
Therefore, Eq. (32) has been modified to yield

k1XZob þ jk̄1 ~xr1j þ j ~xr3j, (33)

when the system is located on the sliding surface, its dynamics are governed by

_sob ¼ C½Df
�

r � k̄ ~xr1 � k sgnð ~xr1Þ� ¼ 0. (34)

Note that only y is considered herein to be known through measurements. Thus, the C matrix can
be defined as ½ 1 0 0 0 �. Due to disturbances and model uncertainties, the system may leave
the sliding surface; thus, causing ~xr1 to become different than zero. It should be emphasized that
the k̄ term in the above equation represents the Luenberger observer gain matrix. It has been
introduced in this formulation to aid the system in reaching the sliding surface. However, when
the system is in the sliding mode, k̄ ~xr1 becomes negligible due to the small numerical values of ~xr1.
The robustness of the system is ensured by the switching term k sgnð ~xr1Þ, which forces the system
to return to the sliding surface whenever ~xr1 becomes different than zero. Based on this reason, the
k̄ ~xr1 term has been ignored in the computation of sgnð ~xr1Þ. Therefore, the switching term is
determined from Eq. (34) as follows:

sgnð ~xr1Þ ¼ ðCkÞ�1CDf
�

r. (35)

Combining Eqs. (31) and (35), the error vector equation becomes

_~x
�

r ¼ ðI � kðCkÞ�1CÞDf
�

r

¼

0 0 0 0

�
k2

k1
1 0 0

�
k3

k1
0 1 0

�
k4

k1
0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
Df
�

r ¼

0 0 0 0

0 0 �
k2

k1
1

0 0 �
k3

k1
0

0 0 �
k4

k1
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
~x
�

r þ

0 0

0 0

1 0

0 1

0
BBBBB@

1
CCCCCA

Df r3

Df r4

( )
. ð36Þ

For an asymptotically stable response of the homogeneous part of the ~xr3 differential equation,
k3=k1 must be positive. However, according to Eq. (33), k1 can only take on positive numerical
values; thus, causing k3 to be positive.
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Due to the unavailability of ~xr2, ~xr3 and ~xr4, a feedforward compensation is implemented
herein based on upper bounds of modeling uncertainties and error variables. For instance,
in the computation of k1 as defined by Eq. (33), both Zob and k̄1 are considered to
be known quantities because they are assigned by the designer. Moreover, ~xr1 is
available through direct measurement. The remaining unknown term ~xr3 is selected to be
the desired upper bound of the error in the estimation of xr3. This yields the following
expression for k1:

k1upper_boundXZob þ jk̄1 ~xr1j þ j ~xr3jdesired upper_bound. (37)

Similarly, k2, k3 and k4 are determined as follows:

k2upper_bound ¼ k1upper_bound
Educated guess on ð ~xr4Þmax

ð ~xr3Þdesired upper_bound

, (38a)

k3upper_bound ¼ k1upper_bound
upper boundonDf r3

ð ~xr3Þdesired upper_bound

, (38b)

k4upper_bound ¼ k1upper_bound
upper boundonDf r4

ð ~xr3Þdesired upper_bound

. (38c)

Note that k̄, representing the Luenberger observer gain matrix, has been treated thus
far as a known quantity. It is determined based on the Ā and C̄ matrices obtained by linearizing
Eq. (8) around x̂

�
re ¼ 0

�
. It is computed herein by assigning l1 ¼ �10, l2 ¼ �11, l3 ¼ �12

and l4 ¼ �13 as the desired eigenvalues for the ðĀ� k̄ C̄Þ matrix. It should be stressed that the

k̄ ~xr1 term provides additional corrective action that aids the system in reaching the sliding
surface.
The preliminary results have demonstrated that the above observer suffers from unacceptable

errors whenever the actual and estimated state vectors have different initial conditions. To
alleviate this problem, Eqs. (30b)–(30d) have been modified by introducing a feedback loop based
on the estimated state variables as follows:

_̂xr2 ¼ x̂r4 � k̄2 ~xr1 � k2 sgnð ~xr1Þ � k2x̂r2, (39a)

_̂xr3 ¼ f̂ r3ðx̂
�

r; t1Þ � k̄3 ~xr1 � k3 sgnð ~xr1Þ � k3x̂r3, (39b)

_̂xr4 ¼ f̂ r4ðx̂
�

r; t1Þ � k̄4 ~xr1 � k4 sgnð ~xr1Þ � k4x̂r4, (39c)
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where k2, k3 and k4 have been selected to yield eigenvalues with negative real parts for the
homogeneous parts of Eqs. (39a)–(39c). Their numerical values were fine tuned to yield the best
compromise between the convergence rate and the estimation errors. Note that large numerical
values of ki’s have had a tendency to increase the convergence rate of the observer at the expense
of deteriorating the estimation accuracy.
Table 3

Numerical values of the system parameters

Parameters of the physical system Value

Cross sectional area of the beam (A) 7:2839� 10�4 m2

Outer radius of the beam (Ro) 0.0381m

Inner radius of the beam (Ri) 0.0349m

Length of the beam (L) 2.3m

Density of aluminum (r) 2707 kg/m3

Mass of the beam (MB) 4.535 kg

Payload mass (mp) 3.405 kg

Fig. 4. Estimated (. . . . . .) and actual (——) generalized coordinate q21 when the plant is controlled by CSMC.
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5. Performance assessment of the controllers and the observer

The dynamic model, accounting for two elastic modes of the flexible link and derived in Section
2, is used herein as a test bed to assess the combined performances of the controllers and the
observer in controlling the rigid and flexible motions of the robotic manipulator. The
digital simulations are carried out based on the numerical values of the model parameters listed
in Table 3.
The observer gains are selected to be k̄ ¼ ½ 46 55:606 155791 188164 � and k ¼
½ 10 10 10 �. It is being used herein to provide on-line estimates for y; q21; _y and _q21, which
are needed for the computation of the control signals of both CSMC and FSMC.
The performance criteria for the controllers are based on achieving zero steady-state error in y,

damping out the unwanted vibrations of the beam, and avoiding excessive control torque
requirements. The Z and l parameters of the CSMC have been selected to be 11 and 40,
respectively. These values were found to yield the best compromise between the reaching time,
treach, the minimum overshoot in y and the minimum deformations of the beam.
First, the combined performances of the controllers and the observer are assessed in the

presence of structured uncertainties of the system. This is done in this study by implementing the
controllers and the observer on the simplified version of the model of the plant, which only takes
Fig. 5. Estimated (. . . . . .) and actual (——) _y when the plant is controlled by CSMC.
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into consideration the first elastic mode of the beam. The initial conditions for the state vectors of
both the plant and the observer are defined to be x

�
rð0Þ ¼ 0

�
and x̂

�
rð0Þ ¼ ½0: 1 0:004 0:2 0:5 �T,

respectively. The performance of the observer, when the robot arm is controlled by the CSMC
and FSMC, is illustrated in Figs. 4–8. Note that only the state variables with the most errors in
their estimations are shown here due to the limited space. The results demonstrate the capability
of the nonlinear observer in accurately estimating the state variables in the presence of structured
uncertainties of the system. Note that _q21 has the slowest convergence rate among all the state
variables (see Figs. 6 and 8).
A closer look at the results reveals that all the estimated state variables suffer from very large

errors during the initial period between t ¼ 0 and 0.02 s. These errors stem from the difference in
the initial conditions between the plant and the observer. The large magnitudes of these errors
have rendered the estimated state variables to be unacceptable for the computation of the control
signals during the period between t ¼ 0 and 0.02 s. Therefore, all the digital simulations,
performed in the current work, have been carried out by activating the controllers at t ¼ 0:02 s.
This allows the estimation errors to become within an acceptable range before the estimated state
variables can be used in the computation of the control signals. Note that the proposed delay in
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activating the controller spans over the first few sampling periods and has a minimal effect on the
time constant of the closed-loop system.
The performance of the CSMC, with or without the observer, is shown in Figs. 9a–11a.

The settling time for y, based on a 2% criterion, is ffi 2:7 s (see Fig. 9a). Note that the
system has reached its target with a large momentum and with a sharp angle of approach.
This is due to the inability of the CSMC to exert a negative control torque in order to slow
down the system response prior to reaching its target. As a consequence, the system response
became highly oscillatory inside the boundary layer; thus, causing the beam to undergo
large deformations around t ¼ 2:7 s (see Fig. 10a). Furthermore, the ‘‘whiplash’’ effect is exhibited
by the large structural deformations at the beginning of the beam movement. It should be
pointed out that the magnitude of the ‘‘whiplash’’ deformation is strongly influenced by
the choice of Z, which is dictated by many factors such as the system overshoot, treach and the
‘‘whiplash’’ induced deformations. Thus, it is extremely hard to effectively reduce the initial
spikes in the deformation curve in the case of CSMC, which uses constant numerical values for
both Z and l. Moreover, Figs. 9a–11a reveal no deterioration in the closed-loop system response
by computing the control actions based on estimated rather than actual state variables. In fact, the
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beam has experienced a smaller deformation around t ¼ 2:7 s when the estimated state variables
were used. Moreover, the slight shift in the control signal, exhibited in Fig. 11a, is attributed to the
additional system uncertainties brought about by the errors in the estimation of the state
variables. As a result, the beam deformation curve has experienced a similar shift. This is
illustrated in Fig. 10a.
Next, the performance of the FSMC is assessed. Note that this controller has the capability

of providing a negative control torque in the region prior to reaching the sliding surface.
Fig. 9 shows that the FSMC yields a totally different transient response for y than the one
generated by the CSMC. The lower portion of the S-shaped y response is due to fuzzy-tuning Z,
which helped in significantly reducing the ‘‘whiplash’’ effect deformations of the beam
(see Fig. 10b). On the other hand, the upper portion of the S-shaped response stems from the
negative control torque applied by the FSMC to dissipate the momentum of the system
as it approaches its final destination. It should be emphasized that both FSMC and CSMC
have led to the same settling time for y (see Fig. 9). Furthermore, the closed-loop system response
generated by the CSMC exhibits larger oscillations than the one obtained by the FSMC (see
Fig. 9). This is because the FSMC boundary layer thickness is much smaller than the one
corresponding to the CSMC; thus, leading to a more accurate beam response by the FSMC than
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generated by using the FSMC with (. . . . . .) or without (——) the observer.

N.G. Chalhoub et al. / Journal of Sound and Vibration 291 (2006) 437–461 455
by the CSMC. Moreover, Fig. 10 demonstrates that the performance of the FSMC is far more
superior to that of the CSMC in damping out the unwanted vibrations of the beam. The absolute
maximum deformations at the free-end of the beam are found to be 10.8 and 4.08mm for the
CSMC and FSMC cases, respectively. In addition, Fig. 11 shows that the maximum control
torques required by the CSMC and FSMC to be �232 and �87.4Nm, respectively. This
demonstrates that the proposed FSMC requires a significantly smaller control torque at the base
joint of the flexible beam than the CSMC. Moreover, Figs. 9b–11b actually illustrate some
improvement in the closed-loop system response when the estimated rather than the actual
state variables are used in the computation of the control signals. Furthermore, the shift in the
control signal, due to the uncertainties that are induced by the estimation errors, is more
pronounced in the FSMC case than in the CSMC one (see Fig. 11). This is due to the stronger
impact that these uncertainties have had on the FSMC control strategy, particularly during the
period when the brake torque is applied. Consequently, the deformation curve experienced a
similar shift (see Fig. 10b).
Second, the combined performances of the controllers and the observer are examined

in the presence of both structured and unstructured uncertainties. This is done by considering
the test bed to be the dynamic model of the manipulator that accounts for the first two
elastic modes of the link. Note that the simplified version of the robot model, which only
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Fig. 10. Deformation at the free-end of the beam: (a) Obtained by applying the CSMC with (. . . . . .) or without (——)

the observer, (b) obtained by applying the FSMC with (. . . . . .) or without (——) the observer.
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accounts for the first elastic mode of the beam, is used herein for the purpose of designing
the controllers and the observer. The results, shown in Figs. 12–14, reveal the same pattern
of the closed-loop response as the one observed in Figs. 9–11. The absolute maxi-
mum deformations at the free-end of the beam are found to be 14.4 and 3.36mm for the CSMC
and FSMC cases, respectively. In addition, Fig. 14 shows that the maximum control
torques required by the CSMC and FSMC are �305 and �71Nm, respectively. Therefore,
the unstructured uncertainties, associated with the second elastic mode of the plant, have
had an adverse effect on the CSMC performance and a favorable effect on the FSMC
performance. These results have confirmed the capability of the proposed controllers and observer
to yield a desired response of the plant in the presence of both structured and unstructured
uncertainties.
6. Summary and conclusions

Two robust nonlinear controllers along with a nonlinear observer have been developed in
this study to control the rigid and flexible motions of a single-link robotic manipulator.
The dynamic model of the robot arm is developed by taking into consideration the rigid-body
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Fig. 11. Control torque at the base joint: (a) Generated by applying the CSMC with (. . . . . .) or without (——) the

observer, (b) generated by applying the FSMC with (. . . . . .) or without (——) the observer.
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motion of the link along with its in-plane transverse deformation. The payload is treated
as a point mass located at the free-end of the beam. The assumed modes method is imple-
mented to approximate the transverse deflection, which is assumed to be dominated by
the first two elastic modes. Note that the second elastic mode is included in the model to
investigate the effects of unstructured uncertainties on the overall performance of the closed-loop
system.
The controllers and the observer have been designed in this study based on a simplified version

of the model of the arm, which only accounts for the first elastic mode of the link. The controllers
consist of a CSMC and an FSMC. The FSMC, whose parameters are determined by FIS, has
been designed based on two Lyapunov functions. The rationale is to provide the FSMC with the
capability of exerting negative control torque during the period when the system is approaching
the boundary layer neighboring the sliding surface. This will significantly reduce the momentum
with which the system approaches the boundary layer; thus, resulting in considerably smaller
structural deformations of the system.
Moreover, the robust nonlinear observer has been designed based on the sliding mode

methodology. It is implemented herein to estimate y; q21; _y; and _q21.
The digital simulations have demonstrated the capability of the observer in yielding accurate

estimates of the state variables in the presence of modeling uncertainties. It has been successfully
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Fig. 12. Controlled y-response: (a) Generated by using the CSMC with (. . . . . .) or without (——) the observer, (b)

generated by using the FSMC with (. . . . . .) or without (——) the observer.
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implemented to provide on-line estimates of the state variables for the computation of the control
signals. The results have illustrated robust performances of the controllers and the observer in
controlling the rigid and flexible motions of the manipulator in the presence of both structured
and unstructured uncertainties. This was achieved irrespective of the differences in the initial
conditions between the plant and the observer. Moreover, the reliance on estimated rather than
actual state variables in the computation of the control signals has been shown to enhance the
suppression of the unwanted vibrations of the arm.
Furthermore, the structural deformations, incurred by the beam at the onset of its move-

ment, have been shown to be significantly reduced by fuzzy-tuning the Z-control parameter.
The results have illustrated the superiority of the FSMC over the CSMC in producing
less oscillatory and more accurate response of the angular displacement at the base joint, in
damping out the unwanted vibrations of the beam, and in requiring significantly smaller control
torques.
Future steps will include experimental work to validate the combined performances of the

controllers and the observer. Among the challenges to be encountered are the impact of
measurement noise on the performance of the observer and the effect of sampling rate on the
performance of the closed-loop system.
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Fig. 13. Deformation at the free-end of the beam: (a) Obtained by applying the CSMC with (. . . . . .) or without (——)

the observer, (b) obtained by applying the FSMC with (. . . . . .) or without (——) the observer.
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Appendix A. Expressions for €h and €q21 in the simplified version of the model

The detailed expressions for €y and €q21 are:

€y ¼ f r3ðx
�

r; t1Þ ¼ gr1ðx
�

rÞ þ b1ðx
�

rÞt1

¼ �
xr2ð661:69xr3xr4 � 66:85x2

r3 � 772189Þ

330:85x2
r2 þ 5:86

þ
18:19t1

330:85x2
r2 þ 5:86

,

€q21 ¼ f r4ðx
�

r; t1Þ ¼ gr2ðx
�

rÞ þ b2ðx
�

rÞt1

¼ �
xr2ð930210� 787:26xr3xr4 þ 80:53x2

r3 þ 649027x2
r2 þ 56:19x2

r2x
2
r3Þ

330:85x2
r2 þ 5:86

�
21:64t1

330:85x2
r2 þ 5:86

.
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Fig. 14. Control torque at the base joint: (a) Generated by applying the CSMC with (. . . . . .) or without (——) the

observer, (b) generated by applying the FSMC with (. . . . . .) or without (——) the observer.
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